УДК 534.222.2.004.74.006.02 © Коллектив авторов, 2011

К.В. Ефремов, мл. науч. сотрудник

М.В. Лисанов, д-р техн. наук, директор центра анализа риска

А.С. Софьин, мл. науч. сотрудник

Е.А. Самусева, науч. сотрудник

С.И. Сумской, канд. техн. наук, науч. сотрудник

А.П. Кириенко, нач. отдела

(ОАО «Орен-АИПР) бургнефть» ТНК-ВР)

(ЗАО НТЦ ПБ)

(АНО АИПР)

Расчет зон разрушения зданий и сооружений при взрывах топливновоздушных смесей на опасных производственных объектах

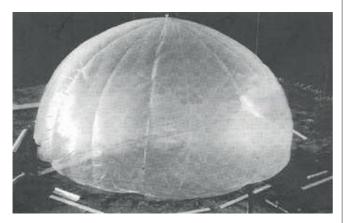
Сравниваются расчеты зон разрушения при внешних взрывах топливно-воздушных смесей, определяемых по российским методикам (РД 03-409—01, ПБ 09-540—03) и методике фирмы TNO (Нидерланды), с экспериментальными данными по взрывам водородовоздушной смеси. Предложен методический подход к оценке риска разрушения зданий и сооружений при аварийных взрывах на опасных производственных объектах.

The paper presents comparison of calculation of destruction zones resulted from outer explosions of fuel-air mixtures, made in accordance with the Russian methods (RD 03-409—01, PB 09-540—03) and methods of TNO (The Netherlands), with the experimental data on hydrogen-air mixture explosions. It proposes technical approach to assessment of buildings and structures fracture risk during accidental explosions at hazardous production facilities.

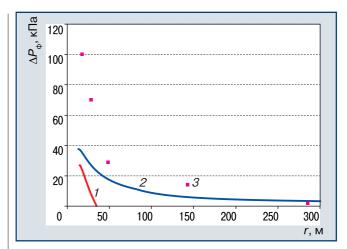
Ключевые слова: аварийный выброс, топливно-воздушная смесь, ударная волна, взрывоустойчивость зданий, анализ риска.

бщие требования об учете риска взрыва и взрывных нагрузок при проектировании изложены в Федеральном законе от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений» [1], Федеральном законе от 22 июля 2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасности» [2], в Общих правилах взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств [3], в Методике оценки последствий аварийных взрывов топливно-воздушных смесей [4] и других нормативных документах [5—8].

Опыт экспертизы проектной документации и деклараций промышленной безопасности взры-


воопасных объектов выявляет типичные ошибки и трудности, связанные с расчетом взрывных процессов (расчет массы вещества выброса и массы вещества, участвующего во взрыве; обоснование критериев разрушения, учет условий окружающей среды; отсутствие количественных критериев взрывоустойчивости; различие результатов расчетов, выполненных по различным нормативным методикам и др.). Применение при проектировании зарубежных компьютерных программ (нередко без описания заложенных в них моделей) вызывает трудности прохождения экспертизы проектной документации, в том числе из-за отсутствия процедуры проверки их соответствия.

Необходимость совершенствовать методики и повышать достоверность расчетов последствий взрыва связана с тем, что завышенные значения расчетных зон разрушения нередко требуют чрезмерных затрат на увеличение прочности конструкций и взрывоустойчивости зданий, сооружений или их удаление на значительное расстояние от возможных источников взрыва (до нескольких километров).


Для решения указанных проблем рассмотрим следующие основные вопросы: верификация математических моделей расчета последствий взрыва, проверка обоснованности применяемых методик, компьютерных программ; сравнение российских методик с зарубежными; расчет массы вещества, участвующего во взрыве; уточнение критериев разрушения различных типов зданий и сооружений, вероятности поражения людей при взрывах; применение количественного анализа риска разрушения зданий и сооружений.

1. Верификация математических моделей взрыва

Верификация математических моделей взрывных процессов с экспериментальными данными затруднена из-за крайне малого числа экспериментов с большим количеством опасного вещества. Одно из таких экспериментальных исследований выполнено в Институте химической технологии Фраунгофера (Германия) [9]. Постановка эксперимента была следующей: полусферический купол с мягкими стенками (рис. 1) радиусом 10 м, расположенный на равнинной поверхности, наполняли стехиометрической водородовоздушной смесью

▲ Рис. 1. Эксперимент с водородом

▲ Рис. 2. Изменение избыточного давления во фронте ударной волны от взрыва водородовоздушной смеси: 1 — в эксперименте; 2 — смоделированное по методике РД 03-409—01; 3 — по методике ПБ 09-540—03

под давлением 100 кПа. Масса водорода составляла 51 кг; горение инициировали по центру. С помощью нескольких датчиков фиксировали изменение избыточного давления во фронте ударной волны ΔP_{Φ} с расстоянием r (рис. 2, кривая I).

Для численного моделирования данного эксперимента по методикам РД 03-409-01 [4] и ПБ 09-540—03 [3] использовали программный комплекс «ТОКСИ+Risk» [10]. Результаты моделирования по обеим методикам (см. рис. 2) демонстрируют консервативность полученных оценок зависимости избыточного давления во фронте ударной волны $\Delta P_{\rm th}$ от расстояния r до центра взрыва. Необходимо отметить, что расчет по модели ПБ 09-540—03 завышает значения избыточного давления, измеренные в ходе эксперимента, более чем в 3 раза. На этом фоне результаты, полученные по методике РД 03-409—01, существенно менее консервативны. Так, давление, равное 20 кПа, согласно экспериментальным данным достигается на расстоянии 20 м, согласно РД 03-409—01 — 38 м, а ПБ 09-540-03 — более чем 100 м.

2. Сравнение российских методик с зарубежными

Проведен анализ различных подходов к расчетам последствий взрывов топливно-воздушных смесей (ТВС), изложенных в российских нормативных документах (РД 03-409—01 и ПБ 09-540—03) и в зарубежной модели Multi-Energy Method [11] фирмы TNO (Нидерланды). Методика для определения радиуса зон поражения при взрывах, приведенная в ПБ 09-540—03, исполь-

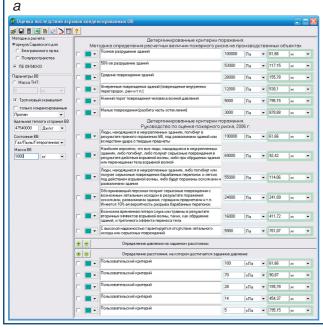
¹ Верификация — проверка, проверяемость, способ подтверждения каких-либо теоретических положений, алгоритмов, программ и процедур путем их сопоставления с опытными (эталонными или эмпирическими) данными, алгоритмами и программами (ru.wikipedia.org).

зует формулу, полученную путем апроксимации границ различных степеней разрушения кирпичных зданий в результате бомбардировок Великобритании во время Второй мировой войны [12]:

$$R = K \frac{\sqrt[3]{W_{\text{T}}}}{\left[1 + \left(\frac{3180}{W_{\text{T}}}\right)^{2}\right]^{1/6}},\tag{1}$$

где K— безразмерный коэффициент, характеризующий воздействие взрыва на объект, значения которого приведены в ПБ 09-540—03 (прил. 2, табл. 2); $W_{\rm T}$ — тротиловый эквивалент, кг.

Основной недостаток данного подхода в том, что модель «тротилового эквивалента» не в полной мере отвечает реальным процессам, происходящим при промышленных авариях со взрывами опасного вещества (ОВ), для которых характерен


дефлаграционный, а не детонационный режим взрывного превращения. Также ПБ 09-540—03 не позволяет учитывать ряд других важных условий и факторов, влияющих на развитие и последствия взрыва, такие, например, как агрегатное состояние опасного вещества, характеристики окружающего пространства и положения точки инициирования взрывоопасного облака.

Указанные недостатки отсутствуют в методике оценки последствий аварийных взрывов, изложенной в РД $03-409-01^{1}$.

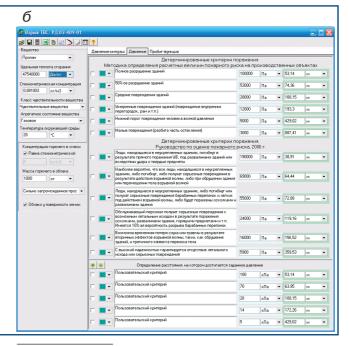

В настоящее время за рубежом расчеты последствий взрыва, как правило, проводят по модели Multi-Energy Method [11]. Для сравнения этой модели с РД 03-409—01 приведем выполненные специалистами ЗАО НТЦ ПБ результаты проверки безопасности зданий поселка строителей, расположенных на расстоянии 300—600 м от модулей (сооружений), содержащих пропан. Для

Таблица 1

Объем емкостей с пропаном,	Расстояние до поселка строите-	ΔP_{ϕ}	в поселке, кПа	Δ , %	% Расстояние, м, от центра взрыва до точки достижения $\Delta {m P}_{m \Phi}$, кПа, значения					
м ³	лей, м	TNO	РД 03-409-01		6,9		Δ , %		4,1	Δ , %
					TNO	РД 03-409—01		TNO	РД 03-409—01	
11 064	496	3,5	4,2	17	258	240,1	7	424	358,1	16
8065	513	3,0	3,7	19	233	216,1	7	382	322,3	16
9700	513	3,2	3,9	18	248	229,8	7	405	342,7	15
17 817	568	3,6	4,2	14	305	281,4	8	495	419,7	15
4928	381	3,5	4,1	15	198	183,3	7	325	273,5	16

▲ Рис. 3. Модули ТОКСИ+^{Risk} для расчета последствий взрыва ТВС по методикам ПБ 09-540—03 (а) и РД 03-409—01 (б)

 $^{^{1}}$ Алгоритм расчета РД 03-409—01 полностью перенесен в методику [6], за исключением неточностей в применимости формул (5) и (6) и учета фазового состояния горючего в ТВС.

Таблица 2

Повреждение	Pac	стояни				ования и, м, п	-				гветствующими						
	1000		Δ, % 2000		Δ, % 5000		Δ, %	10	10 000								
	[4]	[3]		[4]	[3]		[4]	[3]		[4]	[3]						
Сильное повреждение всех зданий ($\Delta P_{\phi} > 100 \; \text{кПа}$)	53	62	16	67	81	21	91	111	22	114	140	23					
Среднее повреждение зданий с массовыми обвалами ($\Delta P_{\varphi} = 70 \text{ к}\Pi a$)	64	91	42	81	119	48	109	164	50	138	207	50					
Среднее повреждение промзданий ($\Delta P_{\varphi} = 28 \ \text{к}$ Па)	108	156	44	136	204	50	185	281	52	233	355	52					
Разрушение оконных проемов, легкие повреждения фабричных труб ($\Delta P_{\varphi} = 14 \text{ к}\Pi a$)	172	454	164	217	596	175	295	819	178	371	1034	179					
Нижний порог повреждения человека волной давления $(\Delta P_{\varphi} = 5 \text{ к}\Pi a)$	429	_	_	541	_	_	734	_	_	924	_	-					

Таблица 3

Повреждение	Pac	стояни					-		зоны с соответствующими метана, кг					
	1000		Δ , %	20	00	Δ , %	50	00	Δ , %	10	000	Δ, %		
	[4]	[3]		[4]	[3]		[4]	[3]		[4]	[3]			
Сильное повреждение всех зданий ($\Delta P_{\phi} > 100 \; \text{к}$ Па)	Н. д.	62	_	Н. д.	82	_	Н. д.	113	_	Н. д.	143	_		
Среднее повреждение зданий с массовыми обвалами ($\Delta P_{\varphi} = 70 \text{ к}\Pi a$)	Н. д.	91	-	Н. д.	121	_	Н. д.	167	_	Н. д.	211	_		
Среднее повреждение промзданий (ΔP_{ϕ} = 28 кПа)	69	156	124	81	208	156	110	286	159	139	361	160		
Разрушение оконных проемов, легкие повреждения фабричных труб ($\Delta P_{\phi} = 14 \text{ к}\Pi a$)	156	454	192	196	607	210	266	834	213	335	1053	214		
Нижний порог повреждения человека волной давления $(\Delta P_{\varphi} = 5 \text{ кПа})$	437	_	_	550	_	_	747	_	_	941	_	_		

сравнения были представлены расчеты, выполненные по модели TNO Multi-Energy Method с помощью имитационной модели взрыва RIPRAP в системе ARAMAS.

Предполагалось полное разрушение оборудования, содержащего пропан в жидкой фазе, выброс его в окружающую среду, образование облака ТВС, ее инициирование.

Сравнение результатов расчетов избыточного давления во фронте ударной волны при возможных авариях в модулях, выполненных по моделям TNO и РД 03-409—01, представлено в табл. 1 (Δ — относительная разница между сравниваемыми величинами). Видно хорошее совпадение. Например, при одинаковом расстоянии значения ΔP_{Φ} , рассчитанные согласно РД 03-409—01 и по модели TNO, совпадают с

точностью до 20 %. При этом значения безопасного расстояния, соответствующие избыточному давлению во фронте ударной волны, при котором происходит частичное разрушение остекления (по разным данным от 2 до $10 \, \text{к}\Pi a$), практически совпадают.

Далее рассмотрим вопросы различий результатов расчета ΔP_{Φ} по действующим российским методикам. Расчеты для сравнения последствий модельных аварий по методикам [4] и [3] проводили с помощью соответствующих модулей программного комплекса ТОКСИ+ Risk [10] (рис. 3).

Для сравнения были выбраны модельные аварии с выбросами в атмосферу различного количества (от 1 до 10 т) горючих газов — пропана (табл. 2) и метана (табл. 3). Расчеты по РД 03-409—01 [4] проводили в консервативных допущениях: кон-

центрация OB в TBC равна стехиометрической, облако газовое и находится в момент взрыва у поверхности земли в условиях сильно загроможденного пространства с температурой окружающей

среды 20 °С.

Из полученных в результате такого моделирования данных (см. табл. 2, 3) хорошо видно, что расчеты по ПБ 09-540—03 [3] за-

Таблица 4

Повреждение	Радиус рассчі поражения (р	Δ , %	Обозначе- ние на рис. 4	
	РД 03-409-01			
Сильное повреждение всех зданий ($\Delta P_{\phi} > 100 \; \kappa \Pi a$)	Н. д.	132	_	
Среднее повреждение зданий с массовыми обвалами (ΔP_{Φ} = 70 Па)	111	195	76	
Среднее повреждение промзданий ($\Delta P_{\phi} = 28 \; \text{к} \; \text{Па}$)	219	339	55	
Разрушение оконных проемов ($\Delta P_{\Phi} = 14 \ \kappa \Pi a$)	350	974	178	
Частичное разрушение остекления, нижний порог повреждения человека волной давления ($\Delta P_{\phi} = 5 \text{ кПа}$)	870	_		

6

▶ Рис. 4. Ситуационный план сценария аварии со взрывом ТВС при полном разрушении емкости V-601A-R:

а — расчет по РД 03-409—01;

 δ — расчет по ПБ 09-540—03

частую дают размеры зоны поражения, более чем в 2 раза превышающие значения, полученные в консервативных приближениях по методике РД 03-409—01 [4]. Что дает такое различие на практике? Возможность существенно сократить затраты на строительство за счет уменьшения безопасных расстояний по сравнению с затратами, основанными на расчетах этих расстояний по ПБ 09-540—03.

Для примера приведем результаты обоснования взрывоустойчивости (требования п. 10.4 ПБ 09-540—03) проектируемых зданий Покровской установки комплексной под-

готовки газа ОАО «Оренбургнефть». В качестве наиболее опасного сценария со взрывом рассматривалось полное разрушение емкости объемом 200 м³, содержащей пропан-бутановую фракцию массой 86 т. Результаты моделирования для пропана массой 8351 кг, участвующего в создании взрывоопасной ТВС, представлены в табл. 4 и на рис. 4.

Как видно из табл. 4, согласно расчету по ПБ 09-540—03 (см. рис. 4) — контрольно-пропускной пункт складов и проходная (см. поз. 12 на рис. 4) — располагаются взоне средних повреждений. Для обеспечения взрывоустойчивости необходимо его удаление на большее расстояние или дополнительное повышение прочности конструкций: например, вместо здания с легким каркасом строительство здания с металлическим или железобетонным каркасом. Согласно расчетам по РД 03-409—01 все объекты находятся в зоне слабых разрушений (менее 14 кПа) и соответствуют требованиям взрывоустойчивости (отсутствие разрушения основных несущих и ограждающих конструкций).

3. Расчет массы вещества, участвующего во взрыве

Для оценки последствий аварийного выброса

горючих веществ (топлива) и взрыва ТВС необходимы расчеты:

массы топлива, образующего облако ТВС в атмосфере;

доли топлива (от общей массы топлива, попавшего в атмосферу), которая может участвовать в энерговыделении, т.е. находится во взрывоопасных концентрационных пределах воспламенения.

Анализ реальных аварий показывает, что не вся жидкая фаза, попадающая в окружающую среду, может переходить в атмосферу (жидкость может образовывать проливы). Более того, не все вещество, образующее облако, будет участвовать во взрыве. Доля вещества, участвующая во взрыве, как правило, не превышает 10 % массы вещества, оказавшегося в атмосфере, т.е. только около 10 % массы ОВ в облаке может сгореть (взорваться), а остальная масса выброшенного ОВ оказывается вне взрывоопасных пределов и не участвует в со-

здании поражающих факторов, прежде всего ударной волны. Данное обстоятельство учитывается при инженерных расчетах путем использования коэффициента участия доли ОВ во взрыве [3, 6, 8].

Для более точных оценок массу топлива, поступающего в атмосферу и формирующего там облако (облака), можно рассчитать с помощью различных подходов, используя, например, ПБ-09-540—03 [3] или РД-03-26—2007 [5]. Эта масса — не постоянная величина, а функция времени и условий окружающего пространства. Наиболее физически правильный подход к нахождению массы $Q_{\rm B3}$ вещества, которое может участвовать во взрыве ТВС, — это расчет по формуле из РД-03-26—2007, согласно которой такая масса определяется путем интегрирования концентрации c по пространству, ограниченному поверхностями $\Sigma_{\rm BKПB}$ и $\Sigma_{\rm HKПB}$:

Таблица 5
$$Q_{\text{вз}} = \iiint\limits_{\Sigma_{\text{HKIIB}} < V < \Sigma_{\text{BKIIB}}} c(x, y, z, t_0) dx dy dz,$$
 (2)

где НКПВ и ВКПВ — соответственно нижний и верхний концентрационные пределы воспламенения; V — объем; x, y, z —координаты; t_0 — момент времени.

4. Критерии разрушения зданий и сооружений, поражения людей

Критерии поражения различной степени тяжести людей, находящихся вне укрытий, наиболее полно представлены в документах [4, 6, 13]. В нормативных документах [4, 6] согласно [12] даны степени разрушения зданий, осредненные по различным их типам, в зависимости от ΔP_{th} . В табл. 5 приведены более точные критерии разрушения зданий и сооружений, учитывающие тип зданий и виды сооружений, полученные из различных источников [3, 4, 6, 7, 13, 14]. Эти данные рекомендуется применять при оценке ожидаемого ущерба от аварий аналогично стандарту [13].

Тип зданий, сооружений			е во фронте ударной ои разрушении					
	слабом	среднем	сильном	полном				
Промышленные здания с тяжелым металлическим или железобетонным каркасом	20–30	30–40	40–50	>50				
Промышленные здания с лег- ким каркасом и бескаркасной конструкции	10–20	25–35	35–45	>45				
Складские кирпичные здания	10–20	20–30	30-40	>40				
Одноэтажные складские помещения с металлическим каркасом и стеновым заполнением из листового металла	5–7	7–10	10–15	>15				
Бетонные и железобетонные здания и антисейсмические конструкции	От 25 до 35	От 80 до 120	От 150 до 200	>200				
Здания железобетонные монолитные повышенной этажности	От 25 до 45	От 45 до 105	От 105 до 170	От 170 до 215				
Котельные, регуляторные станции в кирпичных зданиях	10–15	15–25	25–35	35–45				
Деревянные дома	6–8	8–12	12-20	>20				
Подземные сети, трубопро- воды	400–600	600- 1000	1000- 1500	1500				
Трубопроводы наземные	20	50	130	_				
Кабельные подземные линии	До 800	_	_	1500				
Цистерны для перевозки нефтепродуктов	30	50	70	80				
Резервуары и емкости стальные наземные	35	55	80	90				
Подземные резервуары	40	75	150	200				

На практике при оценке соответствия здания требованиям взрывоустойчивости предлагается исходить из положения п. 2.1.4 [15]: «Во взрывоустойчивых зданиях должна быть исключена возможность разрушения основных несущих и ограждающих конструкций. Допускаются повреждения конструкций случайного характера, не влияющие на их прочность, устойчивость и некоторые эксплуатационные характеристики, а также требующие незначительных материальных затрат на проведение ремонтных работ». Согласно критериям документов [4, 6] и табл. 5 таким условиям отвечает средняя степень повреждения зданий (ΔP_{Φ} не более 28 кПа).

При более точной оценке взрывоустойчивости зданий необходимо учитывать динамические нагрузки, возникающие в элементах конструкций зданий в результате взаимодействия падающей волны сжатия со зданием (в общем виде изменение давления, импульса, напряжений во времени), в том числе ориентацию зданий относительно фронта ударной волны [12, 15].

5. Применение вероятностных методов расчета последствий взрыва, количественного анализа риска разрушений зданий и сооружений

Необходимость применения методологии анализа риска, как правило, связана с невозможностью обоснования проектных решений, основанных на учете только лишь рассчитанных последствий аварий. Особенно актуален этот вопрос при проектировании объектов, где используют нестабильные жидкости (газоконденсаты), сжиженные углеводородные газы в повышенных объемах. Примером таких производств могут служить современные заводы сжиженных природных газов, на которых используют резервуары объемом более 100 тыс. м³. Даже при частичном разрушении таких резервуаров дрейф взрывоопасного облака может достигать расстояния более 1 км.

При проведении количественного анализа риска взрыва рекомендуется:

рассчитывать вероятностные показатели взрывной нагрузки, в том числе распределение частоты возникновения определенного давления ΔP_{Φ} в рассматриваемой точке территории

(аналог поля потенциального риска), в дополнение к общепринятым расчетам зон и степени разрушения, потенциального, индивидуального и других показателей риска;

использовать более точные (по сравнению с [3]) критерии разрушения зданий и поражения людей (см. табл. 5).

Таблица 6

Тяжесть пора- жения	Условная вероятность гибели ли при разрушении						
	полном	сильном	среднем	слабом			
Смертельное	0,6	0,49	0,09	0			
Тяжелые травмы	0,37	0,34	0,1	0			
Легкие травмы	0,03	0,17	0,2	0,05			

Для расчета условной вероятности гибели людей, находящихся в зданиях, рекомендуется применять данные работы [16] о гибели людей при разрушении зданий при взрывах и землетрясениях (табл. 6).

Вероятностные критерии взрывоустойчивости зданий (сооружений) можно установить, исходя из анализа данных табл. 5, 6 и критериев приемлемого индивидуального риска гибели персонала — не более $1 \cdot 10^{-4}$ год $^{-1}$ [2, 13]. В связи с этим риск разрушения здания (сооружения) может быть признан приемлемым, если частота воздействия взрыва на это здание (сооружение) с избыточным давлением во фронте ударной волны, при котором исключена возможность разрушения основных несущих и ограждающих конструкций здания (нарушение целостности сооружения), не превышает $1 \cdot 10^{-4}$ год $^{-1}$.

Согласно табл. 5 предельное значение ΔP_{Φ} для большинства производственных зданий находится в диапазоне $10-30~\mathrm{k\Pi a}$, для сооружений (технологических объектов) — от $20-40~\mathrm{k\Pi a}$ (наземные трубопроводы, резервуары) до $400-800~\mathrm{k\Pi a}$ (подземные трубопроводы, коммуникации).

Учитывая положения п. 4.2.6 РД 03-418—01 [17], а также тот факт, что в данном случае многое определяется экономическими причинами, обосновывать критерии взрывоустойчивости зданий и сооружений целесообразно на стадии проектирования опасного производственного объекта с учетом его специфики.

Считаем целесообразным учесть полученные результаты при переработке ПБ 09-540—03.

Выводы

1. Проведено сравнение результатов расчетов последствий взрыва ТВС по российским нормативным методикам (РД 03-409—01, ПБ 09-540—03) с экспериментальными данными по распространению волны давления от взрыва водородовоздушной смеси, а также с расчетами по методике фирмы ТNО (Нидерланды). Показано:

при одинаковых расстояниях значения избыточного давления во фронте ударной волны, рассчитанные согласно РД 03-409—01 и по модели ТNО, совпадают с точностью до 20%. При этом полученные значения безопасных расстояний практически совпадают;

расчет последствий аварий с выбросами горючих газов по РД 03-409—01 может приводить к существенному уменьшению оценочных размеров зон разру-

шения (в 1,5 и более раз) по сравнению с ПБ 09-540—03.

2. Выполнен обзор критериев воздействия ударной волны на здания и сооружения, представлены рекомендации по оценке взрывоустойчивости, в том числе о проведении количественного анализа риска разрушения зданий и сооружений при аварийных взрывах.

Список литературы

- 1. Φ едеральный закон от 30 декабря 2009 г. № 384-Ф3 «Технический регламент о безопасности зданий и сооружений»// Рос. газ. № 255 (5079). 2009. 31 дек.
- 2. Федеральный закон от 22 июля 2008 г. № 123-Ф3 «Технический регламент о требованиях пожарной безопасности»// Рос. газ. № 163 (4720). 2008. 1 авг.
- 3. *ПБ 09-540—03*. Общие правила взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих производств. Сер. 9. Вып. 11. М.: ГУП НТЦ «Промышленная безопасность», 2003.
- 4. *РД 03-409—01*. Методика оценки последствий аварийных взрывов топливно-воздушных смесей// Методики оценки последствий аварий на опасных производственных объектах. Сер. 27. Вып. 2. М.: ГУП НТЦ «Промышленная безопасность», 2001.
- 5. *РД-03-26—2007*. Методические указания по оценке последствий аварийных выбросов опасных веществ. Сер. 27. Вып. 6. М.: НТЦ «Промышленная безопасность», 2007.
- 6. *Методика* определения расчетных величин пожарного риска на производственных объектах/ МЧС России: Введ. 10.07.2009. М.: ФГУ ВНИИПО МЧС России, 2009.
- 7. ГОСТ Р 12.3.047—98. Пожарная безопасность технологических процессов. Общие требования. Методы контроля. М.: Изд-во стандартов, 1998.
- 8. СП 12.13130.2009. Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности/ МЧС России: Введ. 01.05.2009. М.: ФГУ ВНИИПО МЧС России, 2009.
- 9. Beccantini A., Malczynski A., Studer E. Comparison of TNT-Equivalency Approach, TNO Multi-Energy Approach and a CFD Approach in Investigating

- Hemispheric Hydrogen-Air Vapour Cloud Explosions// 5th International Seminar on Fire and Explosion Hazards, Edinburgh, 2007, 23-27th April.
- 10. Программный комплекс по расчету последствий аварий ТОКСИ+Risk. URL: http://safety.ru/software/toxi#risk (дата обращения 05.09.2011).
- 11. *Methods* for the calculation of physical effects CPR 14E. Part 2. Yellow Book. 3-rd edition. TNO, 2005.
- 12. Взрывные явления. Оценка и последствия: В 2 кн./ У. Бейкер, П. Кокс, П. Уэстайн и др.: Пер. с англ. М.: Мир, 1986.
- 13. *СТО Газпром 2-2.3-400—2009*. Методика анализа риска для опасных производственных объектов газодобывающих предприятий ОАО «Газпром»/ ОАО «Газпром»: Введ. 05.10.2009. М.: ОАО «Газпром», 2009.
- 14. *Аварии* и катастрофы. Предупреждение и ликвидация последствий. Учеб. пособие/ В.А. Котляревский, А.В. Виноградов, С.В. Еремин и др. Кн. 2. М.: ACB, 1996.
- 15. *Пособие* по обследованию и проектированию зданий и сооружений, подверженных воздействию взрывных нагрузок/ АО «ЦНИИПромзданий». М., 2000 г.
- 16. А.М. Козлитин. Вероятностные методы анализа последствий фугасного воздействия взрыва на человека, технологическое оборудование, здания, сооружения при аварийных ситуациях на предприятиях нефтегазовой отрасли// Междунар. науч. сб. СРО «Российская экологическая академия», ООО «Три А», 2005.
- 17. $P\!\!\!/\!\!\!\!/ 03-418 01$. Методические указания по проведению анализа риска опасных производственных объектов. Сер. 3. Вып. 10. М.: ГУП НТЦ «Промышленная безопасность», 2001.

risk@safety.ru